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INTRODUCTION 

IN CHEMICAL engineering it is often required to consider 
operations in which there are physi~o-chemical interactions 
between solid particles and a surrounding fluid. For the 
discussion which follows relevant examples of these oper- 
ations are the evaporation or dissolution of solid particles, 
the combustion of solids and gas phase reactions catalysed 
by solids. In the quantitative treatment of these operations 
it is common practice to assume the particles to be spherical 
and yet this may be far from true (e.g. if the particles come 
out of a grinding operation). As far as diffusion and reaction 
rates are concerned it is important to know the error involved 
in that approximation. Also, if the particles are consumed in 
the process (e.g. evaporation) it may be important to know 
how the particle evolves in shape as it is consumed. 

The treatment of irregular shapes and most regular shapes 
could only be done by computer and even then for only a 
few cases. A shape which lends itself to analytical treatment 
in problems of diffusion is the ellipsoid. Therefore it was 
decided to take the oblate ellipsoid as a ‘model’ of a non- 
spherical particle and to study the problems of diffusion 
around it. The results from this study help assess the error 
involved in approximating real particles by spheres. Only the 
limiting processes of pure diffusion control and pure kinetic 
control are considered. In the treatment of diffusion no 
allowance is made for any convective terms. 

DIFFUSION AROUND AN ELLIPSOID 

An oblate ellipsoid is generated by rotating an ellipse 
about its major axis, Fig. 1; the relationship between the 
rectangular and the spheroidal coordinates is [ 11 

x=eshusinwcosO (la) 

y=eshusinwsintl (lb) 

r=echucosB (W 

with 0 < u < co, 0 Q w < rc, 0 $ B Q 2n and e the distance 
of the focus of the ellipse to the origin. 

Consider a particle in a stagnant fluid medium with solute 
concentration C, far away from the particle, and let the 
concentration of solute (i.e. diffusing species) be C* in the 
fluid adjacent to the particle. 

The solute concentration profile has to satisfy the equation 
of continuity which for steady state and in the absence of 
reaction in the fluid phase reads div grad C = 0 or 

d dC 

-( > du 
shudu =0 

along coordinate u. 
The boundary conditions are 

C=C*, u = u, (i.e. on the particle surface) @a) 

c-rc,, u-+03 (3b) 

the solution to this problem is 

In ltan (u/2)] 
C-C”=(C*-C~)lnltanh(u/2)( (4) 

and the local diffusional flux at any point on the particle 
surface (u = u,) may be obtained from (4) and Fick’s law of 
diffusion as 

N, = &(C*--a’) 
JV (5) 

e sh u, + sm w [ - In / tanh(u,/2)]]shu, 

This flux may be multiplied by the elemental area of the 
ellipsoid surface 

dA = e2shu, sin cu,,!sdo dB (6) 

to give, after integration, the total rate of diffusion of solute 
from the particle 

FIG. 1. Geometrical relationship between rectangular and 
4neD, 

spheroidal coordinates. 
Icli = In ]tanh(u,/2)] (‘*-‘& (7) 

It is interesting to compare this rate of diffusion with that 
for diffusion from the equivalent sphere (i.e. the sphere with 
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NOMENCLATURE 

a, u, semi-major axis of an oblate ellipsoid. M molecular weight of solute [kg mall ‘] 
Subscript i refers to initial conditions [m] N, diffusional molar flux along coordinate u 

A surface area [m*] [mol me2 s- ‘1 
A,, surface area of ellipsoid [m”] & carbon combustion rate for the ellipsoid 
A, surface area of equivalent sphere (i.e. sphere [mol s- ‘1 

with same volume as ellipsoid) [m’] Ro carbon combustion rate for the equivalent 
h, h, semi-minor axis of an oblate ellipsoid. sphere [mol s- ‘1 

Subscript i refers to initial conditions [m} s” length of arc along coordinate u for pure 
c oxygen con~ntration [mol m-“] diffusion [m] 
c* oxygen concentration at the particle surface 1 time [s] 

imol m- “1 U spheroidal coordinate [m] 
C, oxygen concentration away from the particle x, y, z rectangular coordinates. 

[mol m- ‘1 
d diameter of the equivalent sphere [m] Greek symbols 

D* gas phase diffusion coefficient [m’ s- ‘1 P mass of solute per unit volume of solid 

:, 
focal distance of ellipsoid [m] [kg mm ‘1 
rate constant for surface reaction [m s- ‘1 w,o spheroidal coordinates. 

The relationship between d and the ellipsoid (as defined by 
e and u,) is purely geometrical. The ratio R,/&, may be 
written as 

l&/R,, = (sh2ychu,)‘~3[-ln ]tanh(y/2)/] (9) 

and the dependence of this ratio on eccentricity (b/a) is shown 
in Fig. 2. It is apparent from this figure that diffusion from 
an ellipsoid is faster than diffusion from the equivalent 
sphere, but the error in taking the ellipsoid for a sphere is 
less than 20% for b/a > 0.2. 

Also shown in Fig. 2 is the ratio between the area of the 
sphere A,, and that of the ellipsoid with the same volume as 
the sphere, A,,. The difference between the values of R$R,, 
and &/A,, shows that with increasing eccentricity, the 
increase in surface area of the particle is more pronounced 
than the corresponding increase in the rate of diffusion. 

Workers like Pecanha and Gibbs [2] account for the effect 
of particle shape on combustion rates of coal particles by 
means of a shape factor (or sphericity). The above analysis 
shows that those authors are overestimating combustion 
rates for non-spherical particles when diffusion control domi- 
nates 

Equation (5) gives the instantaneous local flux of solute 
under steady-state conditions. If the particle is consumed by 
reaction with the diffusing gas, this equation may be used to 
predict the evolution in shape of the particle by means of a 
pseudo-steady-state analysis. 

-Diffusion control 

--Kinetic control 

0.4 0.6 0.8 IO 
tghu=bla 

FIG. 2. Dependence of the ratio (&JR,,) upon particle eccen- 
tricity for the extreme conditions of diffusion control and 
kinetic control (the dashed line also gives the ratio between 
surface areas of sphere and ellipsoid with the same volume). 

This is a somewhat lengthy mathematical exercise which 
leads to the important conclusion that while shrinking in a 
process controlled by diffusion, an ellipsoid of revolution 
with initial eccentricity b/a and focal length e evolves as a 
succession of ellipsoids of constant eccentricity, b/a, and 
decreasing focal length. (The authors offer to supply the 
proof to any interested reader.) 

This information, together with equation (9) leads to the 
conclusion that the ratio between rates of consumption of 
an ellipsoid and an equivalent sphere is constant throughout 
the process, when under pure diffusion control. 

As a result, in the event of integral analysis of rate data 
for a burning particle for example [3, 41, the assumption of 
spherical shape results in an error which may be calculated 
from Fig. 2 as a function of the initial eccentricity. 

PARTICLE CONSUMPTION UNDER 
PURE KINETIC CONTROL 

In processes such as carbon combustion, the particles are 
consumed by reaction with a gaseous species. The rate of 
combustion is then determined by the combined influence of 
reactant diffusion to, and chemical reaction at the particle 
surface. For high enough temperatures, the rate of par- 
ticle consumption is ‘diffusion controlled’ on account of 
Arrhenius’ law. The analysis presented above is applicable 
then. At lower temperatures carbon particles burn in ‘kinetic 
control’ and it is interesting to consider this situation for 
the sake of comparison. 

In the absence ofdiffusion limitation (i.e. for a slow enough 
reaction rate) the concentration of gaseous reactant at the 
particle surface, C*, is uniform and equal to the con- 
centration far from the particle, C’,. The local rate of solid 
reactant consumption per unit external area is then the same 
at any point on the particle surface, N,, = k,C, where 
kc is the kinetic constant (assuming first-order kinetics). 

The overall rate of consumption of gaseous reactant over 
the ellipsoid is then 

Rez = nA,k,C, (10) 

where n is the number of moles of gas which react with 
one mole of solid. This is to be compared with the rate of 
consumption over the equivalent sphere 

R, = nnd2k,C,,. (11) 

The ratio R$&, = ?rd’/A,,( = A,/A,,) and the dependence of 
this ratio on ellipsoid eccentricity is shown in Fig. 2. It 
may be seen that the error in approximating the particle by 
a sphere is larger in kinetically controlled reactions. 



Technical Notes 1607 

The ‘velocity of shrinkage’ for points on the particle sur- 
face is easily obtained as 1. 

(12) 2 

Where ds, is the element of length perpendicular to the 
particle surface and this is constant over the surface of the 
particle. As a result, the ratio b/a between minor and major 
axes of the ellipse decreases in the process of reaction and so 3. 
the burning particle deviates increasingly from a sphere as 
the reaction proceeds. Indeed, in any period of time, b, and 
a, are reduced by the same amount, say s, and for b, < ai it 4. 
is obvious that (b,/aJ > (6, -~),/(a~ -s). 

The evolution of particle shape may be easily obtained 
from the original ellipsoid by ‘peeling off’ layers of constant 
thickness. 
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INTRODUCTION 

IN A RECENT paper Schulenberg [I] determined analytically 
the stagnation point heat transfer coefficient for natural con- 
vection on the horizontal downward-facing heated plate. In 
his Fig. 9 he plotted 12 points based upon experimental data 
for the ratio of average to stagnation point Nusselt number. 
Haffield and Edwards [2] had correlated average Nusselt 
number on the basis of a virtual extension, x0, of the bound- 
ary layer, as shown in Fig. 1, to allow for the finite thickness 
of the boundary layer as it flowed around the corner of the 
plate, or outwards onto a horizontal adiabatic extension of 
length L,. In this note we apply the virtual displacement 
concept to find a closed-form correlation based upon Schu- 
b&erg’s analysis and compare it to the previous correlation 
(2]. 

ANALYTICAL BASIS 

Given a local Nusselt number Nu,~ that varies with local 
Ra,, where x is measured from the virtua_l edge, the average 
NuL based upon total length L is 

In keeping with the approximate boundary-layer theory of 
Singh et al. [3] and the stagnation point solution of Schu- 
lenberg [l], a one-fifth power relationship is assumed 

Nu, = C’(Pr) Rajis. (2) 

The result of Schulenberg for the stagnation point can be 
expressed as a Nusselt number based upon total length I, 

NuO = y = 2*“C(Pr) Rak” (3) 

where for the infinite isotherm strip Schulenberg gives 

0.571Pr”’ 
c(pr) = (1 +l.156pr3”)1’3’ 

Coefficient C’(Pr) in equation (2) is related to C(Pr) in equ- 
ation (3) by equating h, to the local heat transfer coefficient 
at n,+L/Z. Equation (2) may then be substituted into 
equation (I) and the integration carried out. The result is 

PME EXTEHSION 

FIO. 1. Schematic of the boundary layer on a heated 
horizontal plate facing down. (a) Bare edges ; (b) adiabatic 

extensions. 


